Fair Neighbor Embedding

February 22, 2024

Seoul National University

Table of Contents

- Introduce a new fair nonlinear dimension reduction method.
- Low-dimensional embeddings that preserve high-dimensional data neighborhoods without the biased association of protected groups.

- \mathcal{X} : Feature space in \mathbb{R}^D
- \mathcal{Y} : Embedding space of feature space in \mathbb{R}^d
- S : Set of sensitive attributes

Table of Contents

NeRV

- The Neighbor Retrieval Visualizer is a nonlinear DR method that aims to create low-dimensional data embeddings.
- Given the input data set {x_i}ⁿ_{i=1}, x_i ∈ ℝ^D, the probability that data point j is picked as a neighbor of point i is

$$p_{ij} = \frac{\exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|^{2} / \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|\mathbf{x}_{i} - \mathbf{x}_{k}\right\|^{2} / \sigma_{i}^{2}\right)}$$

where σ_i^2 controls falloff of the p_{ij} with respect to distance.

NeRV outputs an embedding of the points {y_i}ⁿ_{i=1}, y_i ∈ ℝ^d, in a *d*-dimensional output space, where neighbor probabilities q_i = {q_{ij}}_{j=1,...,N,j≠i} are defined based on output coordinates y_i is

$$q_{ij} = \frac{\exp\left(-\|y_i - y_j\|^2 / \sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-\|y_i - y_k\|^2 / \sigma_i^2\right)}.$$

Fairness

• The objective function of NeRV is:

$$C_{ ext{NeRV}} = rac{1}{N}\sum_{i=1}^{N}\left(\lambda D_{ extsf{KL}}\left(p_{i},q_{i}
ight) + (1-\lambda)D_{ extsf{KL}}\left(q_{i},p_{i}
ight)
ight)$$

where λ is a tradeoff parameter, and D_{KL} is the Kullback-Leibler divergence, $D_{KL}(p_i, q_i) = \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$.

 Objective function of Conditional NeRV when values of sensitive variables are given,

$$\begin{split} \mathcal{C}_{\text{CNeRV}} &= \sum_{i} \tau^{\in} \mathcal{D}_{\mathcal{B}} \left(p_{i}^{\in}, q_{i}^{\in} \right) + \left(1 - \tau^{\in} \right) \mathcal{D}_{\mathcal{B}} \left(q_{i}^{\in}, p_{i}^{\in} \right) \\ &+ \tau^{\notin} \mathcal{D}_{\mathcal{B}} \left(p_{i}^{\notin}, q_{i}^{\notin} \right) + \left(1 - \tau^{\notin} \right) \mathcal{D}_{\mathcal{B}} \left(q_{i}^{\notin}, p_{i}^{\notin} \right) \end{split}$$

where $D_B\left(p_i^{S_i}, q_i^{S_i}\right) = \sum_{j \in S_i} p_{ij} \log \frac{p_{ij}}{q_{ij}} + q_{ij} - p_{ij}$ is a Bregman divergence and $p_i^{\in} = \{p_{ij}\}_{j \in S_i^{\in}}$ and $q_i^{\in} = \{q_{ij}\}_{j \in S_i^{e}}$

Define

$$r_{is} = \frac{\sum_{j \neq i} \delta\left(s_{j}, s\right) \exp\left(-\left\|y_{i} - y_{j}\right\|^{2} / \sigma_{i}^{2}\right)}{\sum_{j \neq i} \exp\left(-\left\|y_{i} - y_{j}\right\|^{2} / \sigma_{i}^{2}\right)}$$

and

$$\rho_{is} = \begin{cases} 1 - \omega & \text{if } s = s_i \\ u(s) \cdot \omega / (1 - u(s_i)) & \text{otherwise} \end{cases}$$

where $u(s_i)$ is the overall proportion of sensitive value s_i in the data and $\omega \in [0, 1]$ is a weight controlling influence of value s_i in the neighborhood.

• Term of fair embedding :

$$C_{\text{Fairness}} = \frac{1}{N} \sum_{i} \left(\gamma D_{KL}(\rho_i, r_i) + (1 - \gamma) D_{KL}(r_i, \rho_i) \right),$$

• Final Objective

$$C_{\mathsf{FairNeRV}} = \beta C_{\mathit{CNeRV}} + (1 - \beta) C_{\mathsf{Fairness}}$$

- The Syn data set is an artificial set of 1000 data points with 5 dimensions.
- The first three dimensions have three multivariate Gaussian clusters, cluster membership considered sensitive information.
- Dimensions 4 and 5 dimension have an independent mixture of three multi-variate Gaussian clusters, considered non-sensitive information

